Ring Opening of 2,3-, 3,4-, and 4,6-*O*-Benzylidene Acetals of Pyranosides by Photobromination with Bromotrichloromethane

Jasbir S. Chana, Peter M. Collins,* Farnoosh Farnia, and David J. Peacock Department of Chemistry, Birkbeck College, University of London, Malet Street, London WC1E 7HX, U.K.

2,3-, 3,4-, and 4,6-*O*-Benzylidene pyranoside derivatives on photobromination in bromotrichloromethane yield bromo-deoxy-pyranoside benzoates regio- and stereo-specifically which, for the acyl derivatives of the 2,3- and 3,4-acetals, is superior to their reaction with *N*-bromosuccinimide.

Bromotrichloromethane (BTM) is a reagent known to give trichloromethyl and bromine radicals upon u.v. irradiation which initiate the free radical bromination of benzylic positions.¹ We report here on its use with benzylidenated sugars and find that upon u.v.-irradiation bromo-deoxy-sugar benzoates are produced regio- and stereo-specifically in good

yields.² The reaction is closely related to the well known, highly successful, Hanessian–Hullar *N*-bromosuccinimide (NBS) sugar reaction³ which involves initial homolytic bromination, see (1) for example, followed by heterolytic ring opening. However there are differences, some of which are advantageous, as illustrated by methyl 2-*O*-benzoyl-3,4-*O*- Table 1. Bromination of 2,3-O-benzylidene-L-rhamnosides.

Benzylidene rhamnoside	Methyl 3-bromo-3-deoxyglycoside ^a								
		Yiel	d (%)	N.M.R. ^b					
		hv^c	NBS ^d	δ(H-3)	δ(H-2)	δ (C-3)			
4- <i>O</i> Bz-(4)	(5)	95	37	4.70	5.55	45.9			
	(6)	0	52	4.70e	5.53°	48.1			
4-OAc-(7)	(8)	85	Low	4.53	5.48	45.8			
4-OMe-(9)	(10)	70	80 ^f	4.56	5.52	46.1			
4-OH-(11)	(12)	37	90g	4.52	5.50	52.5			

^a Products (5), (8), (10) and (12) are 6-deoxy-L-altrosides whereas (6) is an L-rhamnoside. ^b ¹H and ¹³C n.m.r. spectra were measured in CDCl₃ at 200 and 50 MHz, respectively; H-3 (t) has $J_{3,2}$ 4.0 and $J_{3,4}$ 4.0 Hz and H-2 (dd) has $J_{2,1}$ 1.0 and $J_{2,3}$ 4.0 Hz. ^c Photochemical bromination in BTM as described in the text. ^d NBS bromination as described in refs. 3 and 8. ^e For (6) H-3 (dd) has $J_{3,2}$ 2.4 and $J_{3,4}$ 8.8 Hz and H-2 (dd) has $J_{2,1}$ 1.3 and $J_{2,3}$ 2.4 Hz. ^f Similar to result achieved in ref. 7. ^g Similar to result achieved in ref. 8.

Table 2. Photobromination of 4,6-O-benzylideneglycopyranoside derivatives in bromotrichloromethane.^a

	Methyl 6-bromo-6-deoxyglycopyranoside 4-benzoate								
Methyl 4,6-O-benzylidene				CH ₂ Br		CHOBz			
glycopyranoside	M.p./°C	$[\alpha]_{\rm D}/^{\circ}$	$\delta_{\rm C}$	δ _H ^b	δ _H	$J_{4,3}J_{4,5}$	Yield(%)		
α-Gluco-2,3-diacetate (13) ^c	88—90	+62	31.4	3.42, 3.50	5.20	9.5, 9.5	85		
β-Gluco-2,3-diacetate (14)	161—3	-75	30.9	3.44, 3.52	5.22	9.0, 9.0	75		
α-Galacto-2,3-diacetate (15)	103	+178		3.39, 3.44	5.82	3.5, 0.7	85		
β-Galacto-2,3-diacetate (16)	150-2	+52	28.6	$2.89, 3.10^{d}$	5.77 ^d	3.5, 0.7	90		
α-Altro-2,3-diacetate (17)	112—4	+48		3.30, 3.32 ^d	5.44 ^d	3.0, 9.0	75		
α-Allo-2,3-diacetate (18)		+42	32.0	3.48, 3.68	5.17	4.0, 10.0	75		
α-Gluco-2,3-ditosylate (19)			30.9	3.31, 3.38	5.38	9.5, 9.5	60 ^h		
α-Gluco-2.3-dimesylate (20) ^f	129—32	+46	31.4	3.42, 3.50	5.3 w	vith H-3	60		
α -Allo-2,3-epoxide (21) ^g			32.4	3.38-3.58e	5.30	2.0, 7.8	90 ^h		

^a ¹H and ¹³C n.m.r. spectra were measured in CDCl₃ at 200 and 50 MHz, respectively. ^b Two doublet of doublets. ^c NBS bromination gave half this yield (ref. 11). ^d Measured in C_6D_6 . ^c A complex multiplet with H-2 and -3. ^f NBS bromination gave similar results (ref. 8). ^g NBS bromination gave similar results (ref. 8, 10). ^b Estimated from ¹H n.m.r. spectrum.

benzylidene- β -D-arabinopyranoside (1).† In a typical reaction two grammes of this compound, dissolved in anhydrous carbon tetrachloride (80 ml) containing bromotrichloromethane (0.5 ml), were irradiated‡ for 1.5 h whilst being agitated by the passage of dry nitrogen; t.l.c. and ¹H n.m.r. spectroscopy measured directly on the photolysate revealed that, in addition to chloroform, methyl 4-bromo-4-deoxy-2,3di-O-benzoyl- α -L-xylopyranoside (2) was produced and this formed at least 90% of the carbohydrate material in the crude photolysate. Evaporation§ followed by chromatography gave pure (2),¶ (86%), [α]_D – 119° (CH₂Cl₂). This regio- and stereo-specific bromination is in marked contrast to the known⁴ non-selective bromination of compound (1) under NBS conditions which affords only 30% of the 4-bromoxyloside accompanied by 60% of the 3-bromo-arabinoside (3). The latter is formed by participation of the 2-O-benzoyl group.⁴

Photoinduced brominations of some methyl 2,3-Obenzylidene- α -L-rhamnopyranoside derivatives are also regioand stereo-specific as shown in Table 1. Thus the 4-benzoate (4) gave the 3-bromo-altroside (5) in 95% yield, whereas a non-selective reaction occurred between NBS and compound (4), giving only 37% of the expected 3-bromo-altroside (5) accompanied by 52% of the 3-bromo-rhamnoside (6), which arose through the participation of the 4-O-benzoyl group. Similar participation must have taken place in the more complex reaction between NBS and methyl 2,3:4,6-di-O-benzylidene- α -D-mannopyranoside reported by Thiem.⁵

Photobromination of the rhamnoside 4-acetate (7) also gave only the 3-bromo-altroside (8) whereas with NBS a mixture of products was formed. Photobromination of (7) in the usual way but in the presence of tetra-n-butylammonium bromide (0.3 molecular equivalents), which might favour acetoxonium ion formation, was without effect on the high yield of compound (8). The 4-O-methyl-rhamnoside (9) gave the 3-bromo-altroside (10) irrespective of the method of bromination, whereas with the unprotected 4-hydroxy compound (11) BTM was distinctly less satisfactory than NBS.

Photobromination with a wide range of 4,6-O-benzylidene derivatives is also successful and, as is found^{8—11} with the NBS reaction, 6-bromo-6-deoxy-4-O-benzoyl glycopyranosides are produced as shown in Table 2. Acetoxy, tosyloxy, mesyloxy, and epoxy groups are compatible with the reaction conditions

 $[\]dagger$ *Endo*-, *exo*-, or a mixture of isomers may be used, since we have shown that isomerization at the benzylidene acetal carbon atom occurs early in the reaction.

[‡] Irradiations were carried out in quartz tubes situated 3 cm from a 450 W medium pressure mercury lamp.

[§] Usually the only work-up necessary.

[¶] All new compounds gave satisfactory elemental analyses and/or m.s. analyses, in addition to essentially first order ¹H n.m.r. spectra and clean ¹³C n.m.r. spectra.

Bz = benzoyl

and results with methyl 4,6-*O*-benzylidene 2,3-di-*O*-acetyl- α and β -D-glucosides (13) and (14), α - and β -D-galactosides (15) and (16), α -D-altroside (17), and α -D-alloside (18) show that with acetyl derivatives stereo- and regio-selective opening of the 1-phenyl-2,3-dioxane ring is maintained with a wide array of stereochemical configurations.

Thus photobromination of protected benzylidenated sugars derivatives in BTM provides a useful additional method for producing bromo-deoxy-sugar benzoates. It can be carried out at room temperature or below, it offers very simple product isolation and it presents a distinct advantage for brominating molecules that possess ester groups prone to participate in the NBS reaction.

Received, 5th August 1987; Com. 1148

References

- 1 E. I. Haiba and L. C. Anderson, J. Am. Chem. Soc., 1957, 79, 4940; E. S. Huyser, *ibid.*, 1960, 82, 391.
- 2 J. S. Chana, P. M. Collins, E. Opara-Mottoh, D. J. Peacock, and P. Premaratne, R. S. C. Carbohydrate Group Spring Meeting, Cambridge, April, 1987.
- 3 S. Hanessian, Adv. Chem. Ser., 1968, 74, 159; J. Gelas, Adv. Carbohydr. Chem. Biochem., 1981, 39, 71.
- 4 S. Hanessian and N. R. Plessas, J. Org. Chem., 1969, 34, 1053.
- 5 J. Thiem and J. Elvers, Carbohydr. Res., 1978, 60, 63.
- 6 C. Monneret, J.-C. Florent, N. Gladieux, and Q. Khuong-Huu, Carbohydr. Res., 1976, 50, 35.
- 7 J-C. Florent, C. Monneret, and Q. Kuong-Huu, *Carbohydr. Res.*, 1977, **56**, 301.
- 8 S. Hanessian and N. R. Plessao, J. Org. Chem., 1969, 34, 1035, 1045.
- 9 T. L. Hullar and S. B. Siskin, J. Org. Chem., 1970, 35, 225.
- 10 H. Paulsen and V. Sinnwell, Chem. Ber., 1978, 111, 879.
- 11 P. Deslongchamps, C. Moreau, D. Fréhel, and R. Chénevert, Can. J. Chem., 1975, 53, 1204.